HEAT EXCHANGE BETWEEN A WELL AND
FINELY-DISPERSED FROZEN GROUND

B. A, Krasovitskii and A. P. Shadrina UDC 536,241

The melting of finely-dispersed ground around a well or borehole is considered theoreti-
cally, and a method is proposed for the solution of this problem,

The intensive development of mineral sites in Siberia and the Far North has presented specialists
with many new problems. One of the most important of these problems is that of the thermal interaction
between boreholes or underground workings and the perpetually-frozen strata. Existing methods of cal-
culating the heat transfer between wells or cylindrical workings and frozen ground [1-3] are based on the
Stefan prineiple, in which it is assumed that all phase transitions take place on the zero isotherm, and the
thermophysical properties of the phases are independent of temperature, These assumptions are valid for
pure ice and coarsely-dispersed frozen ground, such as sand, but not for finely -dispersed frozen ground
such as clays and loams, In these types of ground, some of the water (the free water) freezes (melts)
sharply at 0°C, while the remaining water (the bound or combined water lying close to the walls of the
capillaries) freezes (melts) over a wide range of negative temperatures [4]. One-dimensional linear prob-
lems of freezing and melting in finely-dispersed soils were solved in [5-7] with due allowance for this fact.
In this paper we shall consider the axisymmetric problem of the melting of finely-dispersed frozen ground
around a borehole or cylindrical working, and shall propose an approximate method of solving this prob-
lem,

Let us suppose that a flow of heat carrier at a temperature T, > 0 starts passing into a well of radius
a (Fig. 1) surrounded by frozen ground with an initial temperature Ty < 0. As a result of this action, a
melted region will arise close to the wall, its boundary gradually expanding with time, Considering that
the phase transitions take place over the whole frozen zone and on the zero isotherm, we may write the
heat-conduction equation for the frozen zone in the form
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Remembering that the temperatures of frozen soils usually lie within the range 0to —5°C, we may as-
sume that the ice content and the ice-content-dependent thermophysical properties of the ground vary lin-
early with temperature:
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Let us transform to dimensionless variables
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Thus the heat~conduction equation for the frozen zone takes the form

oT, A d aT,
1+ gTy 22 lo . 2 a4y L2, scre o, 1
e i o (R AR FER M
T2lr=s = Os T2|t=() = TM" (2)

Institute of Physicotechnical Problems of the North, Yakutsk Section, Siberian Branch, Academy
of Sciences of the USSR, Translatedfrom Inzhenerno-Fizicheskii Zhurnal, Vol. 25, No. 1, pp. 129-134,
July, 1973. Original article submitted September 7, 1972,

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 1001 1. No part of this publication may be r‘eprodu?ed,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00.

906



Fig. 1. Vertical section of the well; g
is the radius of the well; T, is the tem~
perature of the heat carrier inside the
well; Ty is the initia.l_temperature of
the frozen ground; r, z are the cylindri-
cal coordinates,
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The heat-conduction equation for such a region has the ordinary form:
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This system is completed by adding the Stefan condition on the zero isotherm, which in the present
case reflects the absorption of the heat associated with the phase transition of the free water:
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In order to solve the problem represented by Eqgs. (1)-(6), we make use of the method of successive
approximations (3, 8], The application of this method to the problem of the melting of frozen ground around
a well in the Stefan setting yields results agreeing closely with the exact solution of [9]. In view of the fact
that the Stefan setting constitutes a limiting case of that represented by the set of equations (1)-(6) (with g
= b = 0) we should expect that the results would agree closely with the exact solution in this case also.

We seek the solution to the problem (1)-(2) in the form
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The function Tz(o) is defined as the solution of the steady-state problem
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In view of the fact that the condition lim T, = Ty arising directly from the condition (2) cannot be

satisfied by any solution of Eq. (8), we follow the usual procedure of introducing a radius of thermal in-
fluence R(t), af which we have

Toly_rey = T (9)
o, —0, (10)
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Thus in order to construct an approximate solution we replace the boundary conditions (2) by the
boundary conditions
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Fig. 2. Time dependence of the reduced radius of melting
(a) and of the radius of thermal influence (b),

The function T2(°) may be sought as a solution of the problem represented by Egs. (8) and (11); it
takes the form
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where p = Ty (1 + (b/2)Tp).

The latter transformation arises from the fact that the value of the product pb [4] is such as to make
terms containing higher powers of this product neghglble The function Tz(i) is found by solving the prob-
lem
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On allowing for Eq. (12), we see clearly that the left-hand side of Eq. (13) is a known function of r,
s,R, s, and R, and Eq. (13) may easily be integrated, giving the function Tz(i) (r,s, R, s, R) Substituting
the resultant expressions into (7) and satisfying condition (1), we obtain a relation of the form
@, (s, R, 5, R)=0,
d . dR (15)

S=— R= —»
d dt
linear with respect to the derivatives, The second relation for these quantities may be derived from con-

dition (6), For this we assume T, ~ T2(°), Ty = Ti("), where Ti(") is a solution to the problem:

1 or®” T 1
2. . : 6
r or i ot 0, (16
2(0) .
T =0, | a@@f,_,—1). a7
B or r=1
The solution is
oln L
o 5
O -~ s (18)

On. substituting these expressions into Eq. (6) we obtain a relation of the form
©,(s, R, 5)=0. 19)

Solving (15) and (19) with respect to the derivatives, we obtain a system of two ordinary differential equa-
i first order
tions of the orde A o
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Rm is the position of the radius of thermal influence at the instant at which the zero isotherm appears. The
latter quantity is found from the equation TZ(") [r=4=0. From this we obtain

Rm = exp (_“T;;/a)- (21)

Solving the system (20) by means of a standard computer program for the integration of systems of
ordinary differential equations, we obtain the law of motion of the zero isotherm s(t) and the radius of ther-
mal influence R(t), and hence the temperature distributions in the melted and frozen zones at various in-
stants of time,

Using the foregoing method, we calculated the heat-transfer process between a well and frozen clay
soils with a total ice content of W; + Wp = 0.57. We considered three cases:

1) W,=:0.57, W, —0;

2) W, --0.47, 1~ —0.05 deg’l, W, =0.1;

B Wy 0.27, 1= 0.15 degl, W, —0.3.

The values of the thermophysical constants were taken as follows:
i o= 1.279 W/m-deg, 7,(0) -= 1.628 W/m-deg, C,(0)=- 2.13-10% J/kg- deg,

F— 0.502-10° 1/kg"deg, b = — 0.204 J/kg" deg’;
@ =077, Ty = 25 C,

f,-- 20 b, p,— 1500 kg/m?,

a—0.14m, T,—=—2C,
[ = 334.9-10% 1/kg.

The first case corresponds to the Stefan setting (curve 1, Fig. 2); the second and third are distin-
guished by an increasing proportion of combined (bound) moisture (curves 2 and 3).

The results of our calculations of the velocity of the melting boundary and the radius of thermal in-
fluence are presented in Fig, 2 for all three cases,

On analyzing these curves, we may draw the following conclusions: the greater the proportion of
combined moisture, the more rapidly does the melting boundary (zero isotherm) move, and the more
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slowly does the boundary of thermal influence progress. Physically this may be explained in the following
way. The velocity of the melting boundary is determined by the amount of ice transforming into water at
this boundary. Whereas in the first case (Stefan setting) all the ice transforms into water on the zero iso-
therm, in the second and third cases some of the ice melts in the interval between the zero isotherm and
the boundary of thermal influence. As a result of this the amount of ice melting on the zero isotherm di-
minishes and its rate of motion increases. For the same reason the velocity of the boundary of thermal
influence diminishes,

NOTATION
a is the radius of the well;
TM is the inifial temperature of the frozen ground;
Ty is the temperature of the heat carrier in the well;

Pis Cj» -Xi, a; are the density, specific heat, thermal conductivity, and thermal diffusivity of the ground;
o is the heat-transfer coefficient;

are the relative quantities of free and combined (bound) moisture;

is the relative ice content;

is the heat of the phase transition;

is the time scale;

is the time;

is the cylindrical coordinate;

is the temperature of the ground;

is the radius of melting,.
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Subscripts

i=1,2 denote the melted and frozen ground, respectively.
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